P-08 プレスセラミックスの反応層の除去について

Removal of reaction layer of press-molded ceramics

〇宇都宮 嵩士, 小山 千菜美, 浦田 詩奈乃, 倉田 浩二*, 杉田 順弘* Utsunomiya T, Koyama C, Urata S, Kurata K, Sugita M 東洋医療専門学校歯科技工士学科3年 *東洋医療専門学校歯科技工士学科

With respect to the manufacturing method of an all-ceramic crown, there are methods such as CAD/CAM and press-molding of a ceramic block. In the press-molding method, a reaction layer on the surface of the molded body occurs due to the burning of the investing material, and a longer process time for removing it. To alleviate these problems, a method of spraying a surface active agent containing boron nitride on the wax pattern before investing is proposed by a manufacturer. In this study, the creation of a reaction layer was examined using a commercially available heat resistance mold lubricant to prevent the interface between the ceramics and the investing material from burning.

オールセラミックス製作用インゴットの加圧成型時,成型体 表面に埋没材とガラスセラミックスの焼き付きによる反応層が生 じ、その除去にはフッ酸などの危険な薬品を使用して時間を要 する.

そこで本研究では、セラミック表面と埋没材の焼き付きを防 ぐ事を目的として市販の耐熱性離型剤を用いて反応層の状態を検 討した.

<材料および方法>

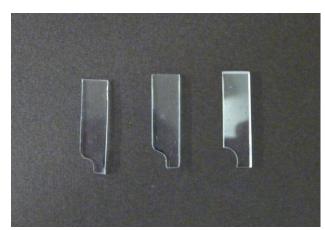
インゴット

- e.maxプレスLT A2, IvoclarVivadent
- ・ジーシーイニシャルLiSiプレス,ジーシー

埋没材

- ・プレスVESTSPEED, IvoclarVivadent
- ・ジーシーLiSiプレスベスト、SRリキッド、ジーシー

耐熱性離型剤


- ・ボロンコートピュア、オキツモ
- ホワイティルブ,オーデック

*試験片製作

- ① 埋没用のパターンとしてアクリル板(15×5×1mm)を使用
- ② リングに植立し、パターンにSRリキッド(界面活性剤)及び 市販の耐熱性離型剤を噴霧した
- ③ メーカーの指示に従って埋没後,加圧成型機(プログラマット EP5010, Ivoclar Vivadent) でプレスした
- ④ ガラスビーズによるサンドブラスト(50μm, 4気圧)にて 取り出し
- ⑤ e.maxにおいてはインベックス液(1%以下のフッ化水素酸) 処理

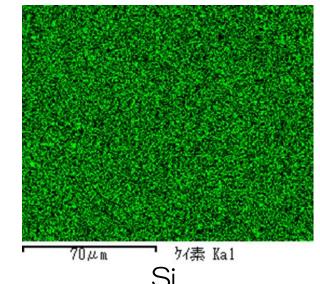
アクリル板

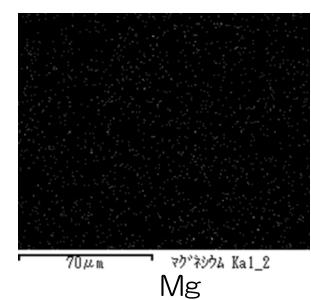
割り出し後の成型体

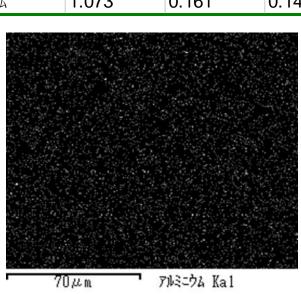
*電子顕微鏡による観察と元素分析

走査型電子顕微鏡(TM3030,日立ハイテクノロジーズ)による 各試料の表面観察とX線分析装置(SwiftED3000,日立ハイテクノ ロジーズ) による元素分析を行った.

X線分析装置



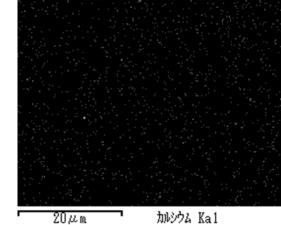

X線分析装置による元素分析

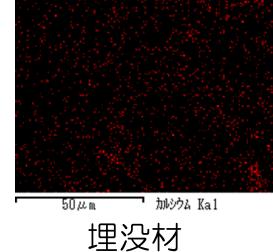

く結果および考察シャ元素分析結果の一例

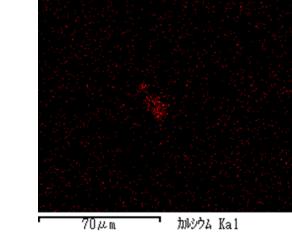
<インゴット(LiSiプレス)> 定性分析 0 0.5 1 1.5 7 ነው 1 12391 ከታንት ከተንነው። 2.086 (298 ከታንታት)

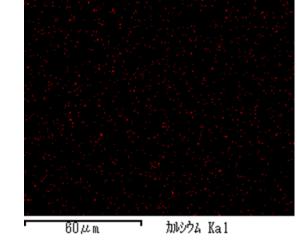
<各元素の分布図>

定性分析。定量分析および各元素の分布図を基に反応層に関す る元素を検討した。


*元素分析の結果および考察


<e.max>


表1. インゴット, 埋没材および成型体の存在元素


			Mg	Al	Si	Р	K	Ca	
		インゴット	0	0	0	0	0	×	
		埋没材	0	0	0	0	×	0	
型		インベックス液※処理前	0	0	0	0	0	0	
	成	インベックス液処理後	0	0	0	0	0	×	
	型	SRリキッド	0	0	0	0	0	×	
	体	ボロンコートピュア	0	0	0	0	0	×	0 . =
		ホワイティルブ	0	0	0	0	0	×	〇;存在する元素X;存在しない元素
	\ ! /	, , , , , , , , , , , , , , , , , , ,							

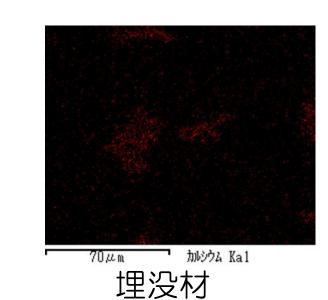
※インベックス液は1%以下のフッ化水素酸を含有

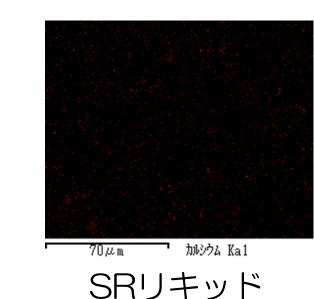
インゴット

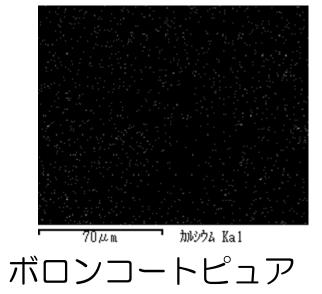
インベックス液処理前 インベックス液処理後

<Ca元素分布図>

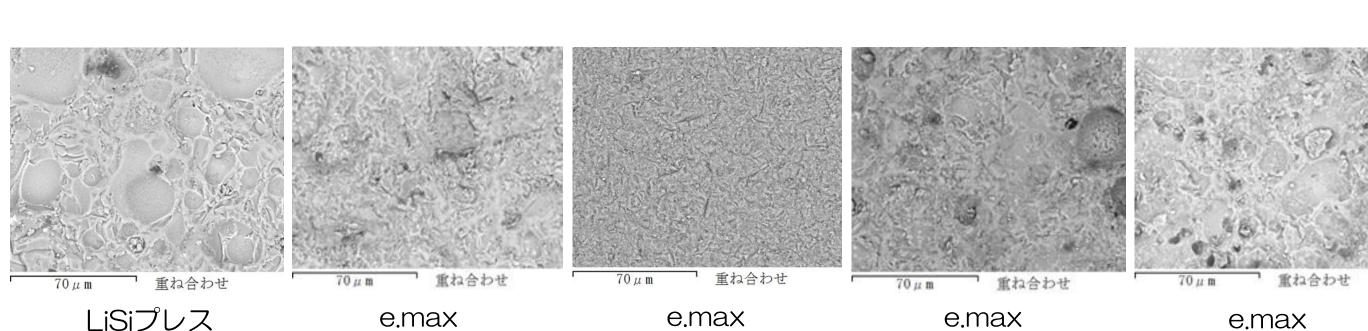
インゴットには存在せず埋没材のみに存在する元素はCaで、反 応層の有無はCaに着目した。インベックス液処理前ではCaは存在 したが、インベックス液処理後ではCaの除去が確認された、その ためCaの有無によって反応層の除去状態を検討した。


埋没前のパターンにSRリキッドや市販の耐熱性離型剤(ボロン コートピュア,ホワイティルブ)を噴霧した試料は,Caの除去が確認 された。それ故SRリキッドおよび耐熱性離型剤を使用した場合に もインベックス液処理した場合と同様に反応層が除去された。


くLiSiプレス>


表2. インゴット, 埋没材および成型体の存在元素

		Mg	Al	Si	Р	K	Ca
	インゴット	×	0	0	0	0	×
	埋没材	0	×	0	0	×	0
成	SRリキッド	0	0	0	0	0	×
型	ボロンコートピュア	×	0	0	0	0	×
体	ホワイティルブ	0	0	0	0	0	×


〇;存在する元素

×;存在しない元素

<Ca元素分布図>

埋没前のパターンにSRリキッドを噴霧した試料はCaの除去が確 認された。また、市販の耐熱性離型剤を噴霧した場合もCaの除去 が確認された。それ故耐熱性離型剤を使用した場合にもSRリキッ ドを噴霧した場合と同様に反応層が除去された.

*表面観察の結果および考察

インベックス液処理前 インベックス液処理後 SRリキッド ボロンコートピュア

LiSiプレスベストおよびSRリキッドを使用した成型体表面には 気泡が生じており、反応層内部に気泡が入ることによりサンドブ ラスト処理による除去がしやすくなっていると考えられる. e.maxにSRリキッドやボロンコートピュアを噴霧した場合にも同 様の気泡が生じ、反応層の除去がしやすくなったと考えられる。

埋没前のパターンに市販の耐熱性離型剤を噴霧することにより, LiSiプレスおよびSRリキッドを使用した場合と同等の効果が得ら 反応層が除去しやすくなった.